Products

UN-GNIR1620L-20MP

Product Features:


· High relative illumination and high contrast

· Low distortion and excellent corner brightness

· High resolution

· Compatible with 1" and 1.1" 20MP camera

Inquiry now
  • description
Send a Message
If you have any problem when using the website or our products, please write down your comments or suggestions, we will answer your questions as soon as possible!Thank you for your attention!
If you have questions or suggestions,please leave us a message,we will reply you as soon as we can!
Related Products
UN-GNIR3520L-20MP
UN-GNIR3520L-20MP

Product Features:


· High relative illumination and high contrast

· Low distortion and excellent corner brightness

· High resolution

· Compatible with 1" and 1.1" 20MP camera

UN-GNIR5020L-20MP
UN-GNIR5020L-20MP

Product Features:


· High relative illumination and high contrast

· Low distortion and excellent corner brightness

· High resolution

· Compatible with 1" and 1.1" 20MP camera

UN-GNIR2520L-20MP
UN-GNIR2520L-20MP

Product Features:


· High relative illumination and high contrast

· Low distortion and excellent corner brightness

· High resolution

· Compatible with 1" and 1.1" 20MP camera

Polarizing Beamsplitter Cubes(PBS cubes)
Polarizing Beamsplitter Cubes
Polarization Beamsplitter Cubes are constructed by cemented two right angle prisms, the hypotenuse of one prism is coated with polarization dielectric coating.

When used with normal incident, un-polarized light, the incident beam is separated into two polarized beams, p-polarized component is passed straight through, s-polarized component is reflected out at 90deg.
IR Optics material
Infrared Optics Material

1Silicon (Si) 


Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns.To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.
 
CZ Silicon is commonly used as substrate material for infrared reflectors and windows in the 1.5-8 micron region. The strong absorption band at 9 microns makes it unsuitable for CO2 laser transmission applications, but it is frequently used for laser mirrors because of its high thermal conductivity and low density. Application as window, lens in the 1.5 - 8 um region; Mirror for CO2 laser and spectrometer applications.
 

Crystallographic properties
Syngony Cubic
Lattice Constant, A 5.43
Physical properties
Density 2.33g/cm3
Hardness, Mohs 7
Dielectric Constant for 9.37 x 109 Hz 13
Melting point, оС 1414
Thermal Conductivity, W/m·K at 313 K 163
Thermal Expansion, 1/K at 293 K 2.6x10-6
Specific Heat Capacity, J/(kg°C) 712.8
Bandgap, eV 1.1
Knoop Hardness, kg/mm2 1100
Youngs Modulus, Gpa 130.91
Shear Modulus, GPan 79.92
Bulk Modulus, GPa 101.97
Debye Temperature, K 640
Poissons Ratio 0.28
Chemical properties
Solubility in water None
Molecular Weight 28.09

2. ZnS material:


ZnS MultiSpectral Under intense heat and pressure, defects within the crystalline lattice are virtually eliminated, leaving a water-clear material with minimal scatter and high transmission characteristics from 0.4 to 12 microns. This material is particularly well suited for high-performance common aperture systems that must perform across a broad wavelength spectrum.

Specifications:

Material: ZnS MultiSpectral
Diameter Tolerance: --------------------- +0.0, -0.1mm
Thickness Tolerance: -------------------- ±0.1mm
Clear Aperture: ---------------------------->85%
Parallelism: -----------------------------------3 arc minute
Surface Quality: ----------------------------80-50 scratch and dig
Wavefront Distortion: -------------------- λ /2 per 25mm @633mm
Bevel: -----------------------------------------Protective  (<0.2mm x 45° )
Coating: -------------------------------------- Optional (Uncoated, AR Coating, etc.)


3. ZnSe material


ZnSe is a preferred material for lenses, windows, output couplers and beam expanders for its low absorptivity at infrared wavelengths and its visible transmission. For high-power applications, it’s critical that the material bulk absorption and internal defect structure be carefully controlled, that minimum-damage polishing technology be employed, and the highest quality optical thin-film coatings are used. The material absorption is verified by CO2 laser vacuum calorimetry. Our quality assurance department provides testing and specific optics certification on request.

ZnSe is non-hygroscopic and chemically stable, unless treated with strong acids. It’s safe to use in most industrial field, and laboratory environments.



Double-Concave Lenses with AR coating
VIS-NIR Coated Double-Concave (DCV) Lenses
Double Concave Lenses are used in beam expansion, image reduction, or light projection applications. These lenses are also ideal for expanding the focal length of an optical system. Double Concave Lenses, which have two concave surfaces, are Optical Lenses with negative focal lengths. Uni-Optics offers Double Concave lenses with a variety of coating options.
Custom Plano concave cylindrical lens
Plano-Concave Circular Cylindrical Lenses
Plano-concave rectangular cylindrical lenses provide uni-axial negative imaging for anamorphic beam expansion and a wide range of applications.These lenses may also be used as mirror blanks if a concave cylindrical surface mirror is required.
Subscribe Our Newsletter
get in touch
REQUEST A FREE QUOTE
If you have any problem when using the website or our products, please write down your comments or suggestions, we will answer your questions as soon as possible!Thank you for your attention!

Copyright © UNI OPTICS CO., LTD © All Rights Reserved.

leave a message

Home

Products

COMPANY

Contact