Products
Home /

Optical compoments

/

Optical Material

/Infrared Optics Material

Infrared Optics Material

Inquiry now
  • description

1.  Germanium (Ge)


Germanium (Ge) is the preferred lens and window material for high performance infrared imaging systems in the 8–12 μm wavelength band. Its high refractive index makes Ge ideal for low power imaging systems because of minimum surface curvature. Chromatic aberration is small, often eliminating the need for correction.

 

Crystallographic properties
Syngony Cubic
Crystal Form Poly or Single Crystal
Lattice Constant 5.66
Cleavability <111>, non-perfect
Molecular Weight 72.6
Physical properties
Density, at 20 °C 5.33
Hardness, Mohs 6.3
Dielectric Constant for 9.37 × 109 Hz at 300 K 16.6
Melting 937
Thermal Conductivity, W/m·K at at 293 K 59
Thermal Expansion, 1/K at 298 K 6.1 × 10-6
Specific Heat Capacity, J/(kgK) at 273-373 K 0.074
Bandgap, eV 0.67
Knoop Hardness, kg/mm2 800
Youngs Modulus, Gpa 102.66
Shear Modulus, GPa 67.04
Bulk Modulus, GPa 77.86
Debye Temperature, K 370
Poissons Ratio 0.278
Elastic Coefficient C11=129, C12=48.3, C44=67.1
Apparent Elastic Limit 89.6 MPa (13000psi)
Chemical properties
Solubility in water None
Solubility in acids Soluble
Molecular Weight 72.59

2. Silicon (Si) 


Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns.To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.
 
CZ Silicon is commonly used as substrate material for infrared reflectors and windows in the 1.5-8 micron region. The strong absorption band at 9 microns makes it unsuitable for CO2 laser transmission applications, but it is frequently used for laser mirrors because of its high thermal conductivity and low density. Application as window, lens in the 1.5 - 8 um region; Mirror for CO2 laser and spectrometer applications.
 

Crystallographic properties
Syngony Cubic
Lattice Constant, A 5.43
Physical properties
Density 2.33g/cm3
Hardness, Mohs 7
Dielectric Constant for 9.37 x 109 Hz 13
Melting point, оС 1414
Thermal Conductivity, W/m·K at 313 K 163
Thermal Expansion, 1/K at 293 K 2.6x10-6
Specific Heat Capacity, J/(kg°C) 712.8
Bandgap, eV 1.1
Knoop Hardness, kg/mm2 1100
Youngs Modulus, Gpa 130.91
Shear Modulus, GPan 79.92
Bulk Modulus, GPa 101.97
Debye Temperature, K 640
Poissons Ratio 0.28
Chemical properties
Solubility in water None
Molecular Weight 28.09

3、ZnS material:


ZnS MultiSpectral Under intense heat and pressure, defects within the crystalline lattice are virtually eliminated, leaving a water-clear material with minimal scatter and high transmission characteristics from 0.4 to 12 microns. This material is particularly well suited for high-performance common aperture systems that must perform across a broad wavelength spectrum.

Specifications:

Material: ZnS MultiSpectral
Diameter Tolerance: --------------------- +0.0, -0.1mm
Thickness Tolerance: -------------------- ±0.1mm
Clear Aperture: ---------------------------->85%
Parallelism: -----------------------------------3 arc minute
Surface Quality: ----------------------------80-50 scratch and dig
Wavefront Distortion: -------------------- λ /2 per 25mm @633mm
Bevel: -----------------------------------------Protective  (<0.2mm x 45° )
Coating: -------------------------------------- Optional (Uncoated, AR Coating, etc.)


4. ZnSe material


ZnSe is a preferred material for lenses, windows, output couplers and beam expanders for its low absorptivity at infrared wavelengths and its visible transmission. For high-power applications, it’s critical that the material bulk absorption and internal defect structure be carefully controlled, that minimum-damage polishing technology be employed, and the highest quality optical thin-film coatings are used. The material absorption is verified by CO2 laser vacuum calorimetry. Our quality assurance department provides testing and specific optics certification on request.

ZnSe is non-hygroscopic and chemically stable, unless treated with strong acids. It’s safe to use in most industrial field, and laboratory environments.



Send a Message
If you have any problem when using the website or our products, please write down your comments or suggestions, we will answer your questions as soon as possible!Thank you for your attention!
If you have questions or suggestions,please leave us a message,we will reply you as soon as we can!
Related Products
Optical color less glass
Optical Grade Glass
Optical glass can change the direction of light, as well as relative spectral distribution of ultraviolet, visible or infrared light.Optical glass material is the most common type because of its excellent optical properties such as high light transmission and environmental stability.
Colored Glass Substrates
Colored Glass(Cut-off, Absorption,-selective, Neutral color glass)

UNI Optics supply material include neutral density, short pass, long pass, band pass, ultraviolet, infrared,heat  absorbing, and color temperature conversion filters. Just point and click on the name above to view information on that manufacturers filters.

UN Grade Fused Silica
UV Fused Silica
Fused Silica is formed by chemical combination of silicon and oxygen. Fused Silica is perfect optical material due to its good UV and IR transmission, low coefficient of thermal expansion. It has high stability and resistance to thermal shock over large temperature excursions, wide temperature operating range and high laser damage threshold.
Laser Crystal
Optical Crystals

Crystal are main applied for laser application. UNI OPTICS offers the following crystal products.

1. Laser Crystals and Rods: YAG crystal, Nd: YVO4 Crystal

2. Nonlinear Crystals: BBO, KTP, LiNbO3, LBO. KDP&DKDP
3. Birefringent Crystals: YVO4, a-BBO, Calcite.

Corner Cube Prisms with blacking painting
N-BK7 Corner Cube Retroreflectors Prisms
Corner Cube Prism also called  Retroreflector. It has three mutually perpendicular surfaces and a hypotenuse face. Light entering through the hypotenuse is reflected by each of the three surfaces in turn and will emerge through the hypotenuse face parallel to the entering beam regardless of the orientation of the incident beam. For its special performance, it is often used to the distance measurement, optical signal process and laser.
Achromatic Lenses with AR coating at visible range
Broadband AR Coated Achromatic Lenses(Doublet Lenses)
Achromatic Lenses are used to minimize or eliminate chromatic aberration. The achromatic design also helps minimize spherical aberrations. Achromatic Lenses are ideal for a range of applications, including fluorescence microscopy, image relay, inspection, or spectroscopy. Achromatic Lenses, which are often designed by either cementing two elements together or mounting the two elements in a housing, create smaller spot sizes than comparable singlet lenses.
BK Right Angle Prisms with AR Coating
BBAR Coated Hypotenuse Right Angle Prisms
Right Angle Prisms are typically used to bend image paths or for redirecting light at 90°. Right Angle Prisms are Prisms designed with a 90° angle. Right Angle Prisms produce inverted or reverted left handed images, depending on the orientation of the prism. Using two Right Angle Prisms together is ideal for image or beam displacement applications. These prisms are also known as image reflection or reflecting prisms.
Machine Vision Lenses
UN-TFA08516C

Product Features:


1. Compatible for 2/3'' Format Sensor

2. Ultra-compact Design

3. Ultra Low Distortion

4. High Relative Illumination

5. High Cost Performance

6. Supply with Focus and Iris locking screws.


Product information: Custom designs are available upon request.

Download the datasheet of UN-TFA08516C


Zinc Selenide Windows
IR Windows Zinc Selenide(ZnSe) Windows
ZnSe is used widely for IR components, windows and lenses, and applied for Thermal Imaging, FLIR,  Medical systems and Co2 Laser
UN-TFA1620L-12MP
UN-TFA1620L-12MP
· High relative illumination and high contrast
· Low distortion and excellent corner brightness
· High resolution
· Compatible with 1" and 1.1" 12MP camera
Beamsplitter Penta Prisms
MgF2 Coated, Penta Prism Beamsplitter
Beamsplitter Penta Prism by adding a wedge and with partial reflective coating on one of its leaning surfaces, Penta Prism can be used as Beamsplitter. Transmission/reflection (T/R) ratio of 50/50, or others for Beamsplitter Penta Prism is available upon request.
UN-GSWIR2514C
UN-GSWIR2514C

Gemini Series SWIR Lens

Model

UN-GSWIR2514C

Focal length

25mm

Aperture

F1.4

Image Format

1

Mount

C

Field Angle

 

1

D

61.93°

H

52.21°

V

40.1°

Optical Distortion

<-0.96%

M. O. D.

0.3m

Dimension

Φ36.5*54.91mm

Flange BFL

17.526mm

Back Focal Length

11.51mm

Resolution

80lp/mm

Operation

Manual Iris

Manual Focus

Design Wavelength

900-1700nm

Filter Thread

M34*0.5


Subscribe Our Newsletter
get in touch
REQUEST A FREE QUOTE
If you have any problem when using the website or our products, please write down your comments or suggestions, we will answer your questions as soon as possible!Thank you for your attention!

Copyright © UNI OPTICS CO., LTD © All Rights Reserved.

leave a message

Home

Products

COMPANY

Contact