Products
Home /

Laser Optics

/Laser beam collimation Lens

Laser beam collimation Lens

Laser Lenses are used to focus collimated light from laser beams in a variety of laser applications. Laser Lenses include a range of lens types including PCX Lenses, Cylinder Lenses, or Laser Generator Lenses. Laser Lenseare designed to focus light in several different ways depending on the lens type, such as focusing down to a point,  a line, or a ring. Many different lens types are available in a range of wavelengths.

  • product origin:

    China
  • shipping port:

    Fuzhou China
  • lead time:

    4 working weeks
  • payment:

    T/T prepayment, Western Union
Inquiry now
  • description

1、What’s the Laser Lenses?

 

Laser Lenses are mainly used to focus light in several different ways depending on the lens type, such as focusing down to a point, a line, or a ring. Many different lens types are available in a range of wavelengths.

 

2、What’s UNI Optics main types of Laser Lenses?

 

UNI OPTICS Laser Lenses include a range of lens types including PCX Lenses, PCV Lenses, double concave lenses, double convex lenses, meniscus Lenses, Achromatic Lenses, Cylindrical Lenses, or Laser Generator Lenses etc.

 

3、What’s the material of Laser Lenses?

 

Optical colorless glass, Fused Silica, CaF2, Sapphire, Germanium, Silicon, ZnSe, ZnS, etc.

 

4、What’s the main application of laser lenses?


Laser Lenses are used to focus collimated light from laser beams in a variety of laser applications.

 

 Laser Lens

 

 

Send a Message
If you have any problem when using the website or our products, please write down your comments or suggestions, we will answer your questions as soon as possible!Thank you for your attention!
If you have questions or suggestions,please leave us a message,we will reply you as soon as we can!
Related Products
BK7 Laser Grade Mirrors
Laser Grade Line Mirrors
Laser mirrors are fabricated with specialized coatings, which will offer high damage thresholds.
Laser Windows
High Power Laser Line Windows

1、What is laser windows?


Laser Protect Windows(Laser protective glass, protective filters or welding protective windows) are used to save for the high cost of laser optics.


2、What is laser windows used for?


These windows are normally used in applications laser cutting, laser welding machine, it used for avoid the high-precision laser optics damage by material splashes.


3、The key features of UNI Optics' Laser Windows


High Transmission

High Damage Threshold

Low Scatter

Low Absorption

Excellent Film Density

Excellent Environmental Stability


Laser Windows   Laser Windows

Typical Specifications:

 

Dimension: 4mm-80mm, round or square

Material: BK7, Fused Silica, ZnSe...etc

Surface quality: 10/5

Surface flatness: Lambda/10@632.8nm

Parallelism: 30’’

Roughness: 3A

Laser Prisms
Laser Grade Prisms
Prisms are transparent optical devices which refract or reflect light. They have manifold applications in laser technology.
Dove Prisms and Roof Prism
BK7 And Fused Silica Glass Dove Prisms
Invented by H.W. Dove, Dove Prisms are also known Reversion prisms.  When the prism is rotated about its length axis, the image viewed through the prism rotates at twice the prism rotation rate.  This is an unusual and sometimes useful property for special applications. Entry and exit faces are anti-reflection coated.
Laser Windows
High Power Laser Line Windows

1、What is laser windows?


Laser Protect Windows(Laser protective glass, protective filters or welding protective windows) are used to save for the high cost of laser optics.


2、What is laser windows used for?


These windows are normally used in applications laser cutting, laser welding machine, it used for avoid the high-precision laser optics damage by material splashes.


3、The key features of UNI Optics' Laser Windows


High Transmission

High Damage Threshold

Low Scatter

Low Absorption

Excellent Film Density

Excellent Environmental Stability


Laser Windows   Laser Windows

Typical Specifications:

 

Dimension: 4mm-80mm, round or square

Material: BK7, Fused Silica, ZnSe...etc

Surface quality: 10/5

Surface flatness: Lambda/10@632.8nm

Parallelism: 30’’

Roughness: 3A

Sapphire Crystal Windows
AR Coated Sapphire Windows
Sapphire window retains its high strength at high temperatures, has good thermal properties and excellent transparency. It is chemically resistant to common acids and alkali at temperatures up to 1000 °C as well as to HF below 300 °C . These properties encourage its wide use in hostile environments where optical transmission in the range from the vacuum ultraviolet to the near infrared is required.
Plano-Concave Lenses
Optical Glass Plano-Concave Lenses
Plano Concave Lenses are ideal for beam expansion, light projection, or for expanding an optical system's focal length. Plano Concave Lenses, which have one concave surface, are Optical Lenses with negative focal lengths. PCV Lenses should be shaped with the plano, or flat, surface towards the desired focal plane. PCV Lenses are ideal for use in a range of applications or industries. Uni-Optics offers PCV lenses with a variety of coating options.
Fused Silica Wedges Prisms
N-BK7 and Fused Silica Wedge Prisms
Wedge prism is an optical element with plane-inclined surfaces, usually the faces are inclined toward one another at a very small angles.  It diverts light toward its thicker portion.  Wedge prisms can be used as isolating components. Wedges may also be used to produce a small deviation which doesnt allow return to source.
IR Optics material
Infrared Optics Material

1.  Germanium (Ge)


Germanium (Ge) is the preferred lens and window material for high performance infrared imaging systems in the 8–12 μm wavelength band. Its high refractive index makes Ge ideal for low power imaging systems because of minimum surface curvature. Chromatic aberration is small, often eliminating the need for correction.

 

Crystallographic properties
Syngony Cubic
Crystal Form Poly or Single Crystal
Lattice Constant 5.66
Cleavability <111>, non-perfect
Molecular Weight 72.6
Physical properties
Density, at 20 °C 5.33
Hardness, Mohs 6.3
Dielectric Constant for 9.37 × 109 Hz at 300 K 16.6
Melting 937
Thermal Conductivity, W/m·K at at 293 K 59
Thermal Expansion, 1/K at 298 K 6.1 × 10-6
Specific Heat Capacity, J/(kgK) at 273-373 K 0.074
Bandgap, eV 0.67
Knoop Hardness, kg/mm2 800
Youngs Modulus, Gpa 102.66
Shear Modulus, GPa 67.04
Bulk Modulus, GPa 77.86
Debye Temperature, K 370
Poissons Ratio 0.278
Elastic Coefficient C11=129, C12=48.3, C44=67.1
Apparent Elastic Limit 89.6 MPa (13000psi)
Chemical properties
Solubility in water None
Solubility in acids Soluble
Molecular Weight 72.59

2. Silicon (Si) 


Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns.To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.
 
CZ Silicon is commonly used as substrate material for infrared reflectors and windows in the 1.5-8 micron region. The strong absorption band at 9 microns makes it unsuitable for CO2 laser transmission applications, but it is frequently used for laser mirrors because of its high thermal conductivity and low density. Application as window, lens in the 1.5 - 8 um region; Mirror for CO2 laser and spectrometer applications.
 

Crystallographic properties
Syngony Cubic
Lattice Constant, A 5.43
Physical properties
Density 2.33g/cm3
Hardness, Mohs 7
Dielectric Constant for 9.37 x 109 Hz 13
Melting point, оС 1414
Thermal Conductivity, W/m·K at 313 K 163
Thermal Expansion, 1/K at 293 K 2.6x10-6
Specific Heat Capacity, J/(kg°C) 712.8
Bandgap, eV 1.1
Knoop Hardness, kg/mm2 1100
Youngs Modulus, Gpa 130.91
Shear Modulus, GPan 79.92
Bulk Modulus, GPa 101.97
Debye Temperature, K 640
Poissons Ratio 0.28
Chemical properties
Solubility in water None
Molecular Weight 28.09

3、ZnS material:


ZnS MultiSpectral Under intense heat and pressure, defects within the crystalline lattice are virtually eliminated, leaving a water-clear material with minimal scatter and high transmission characteristics from 0.4 to 12 microns. This material is particularly well suited for high-performance common aperture systems that must perform across a broad wavelength spectrum.

Specifications:

Material: ZnS MultiSpectral
Diameter Tolerance: --------------------- +0.0, -0.1mm
Thickness Tolerance: -------------------- ±0.1mm
Clear Aperture: ---------------------------->85%
Parallelism: -----------------------------------3 arc minute
Surface Quality: ----------------------------80-50 scratch and dig
Wavefront Distortion: -------------------- λ /2 per 25mm @633mm
Bevel: -----------------------------------------Protective  (<0.2mm x 45° )
Coating: -------------------------------------- Optional (Uncoated, AR Coating, etc.)


4. ZnSe material


ZnSe is a preferred material for lenses, windows, output couplers and beam expanders for its low absorptivity at infrared wavelengths and its visible transmission. For high-power applications, it’s critical that the material bulk absorption and internal defect structure be carefully controlled, that minimum-damage polishing technology be employed, and the highest quality optical thin-film coatings are used. The material absorption is verified by CO2 laser vacuum calorimetry. Our quality assurance department provides testing and specific optics certification on request.

ZnSe is non-hygroscopic and chemically stable, unless treated with strong acids. It’s safe to use in most industrial field, and laboratory environments.



Optical color less glass
Optical Grade Glass
Optical glass can change the direction of light, as well as relative spectral distribution of ultraviolet, visible or infrared light.Optical glass material is the most common type because of its excellent optical properties such as high light transmission and environmental stability.
Hi Precision Beamsplitters Cubes
Broadband Polarizing Cube Beamsplitters
Beamsplitter Cubes are constructed by cemented two right angle prisms.  The hypotenuse of one prism is coated with polarization dielectric coating.
CaF2 Infrerad Windows
IR Windows Calcium Fluoride CaF2 Windows

Calcium Fluoride windows and lenses for UV and IR spectrum. Custom made CaF2 windows, CaF2 lenses and wedges according customer's specifications. CaF2 windows up to 220mm diameter; CaF2 wedges, prisms and CaF2 mirrors; Excimer CaF2 optics, Raman grade CaF2 optics and etc.

Subscribe Our Newsletter
get in touch
REQUEST A FREE QUOTE
If you have any problem when using the website or our products, please write down your comments or suggestions, we will answer your questions as soon as possible!Thank you for your attention!

Copyright © UNI OPTICS CO., LTD © All Rights Reserved.

leave a message

Home

Products

COMPANY

Contact